Drawing inspiration from the hierarchical processing of the human auditory system, which transforms sound from low-level acoustic features to high-level semantic understanding, we introduce a novel coarse-to-fine audio reconstruction method. Leveraging non-invasive functional Magnetic Resonance Imaging (fMRI) data, our approach mimics the inverse pathway of auditory processing. Initially, we utilize CLAP to decode fMRI data coarsely into a low-dimensional semantic space, followed by a fine-grained decoding into the high-dimensional AudioMAE latent space guided by semantic features. These fine-grained neural features serve as conditions for audio reconstruction through a Latent Diffusion Model (LDM). Validation on three public fMRI datasets-Brain2Sound, Brain2Music, and Brain2Speech-underscores the superiority of our coarse-to-fine decoding method over stand-alone fine-grained approaches, showcasing state-of-the-art performance in metrics like FD, FAD, and KL. Moreover, by employing semantic prompts during decoding, we enhance the quality of reconstructed audio when semantic features are suboptimal. The demonstrated versatility of our model across diverse stimuli highlights its potential as a universal brain-to-audio framework. This research contributes to the comprehension of the human auditory system, pushing boundaries in neural decoding and audio reconstruction methodologies.