https://github.com/sunxiaojie99/Reproducibility-for-MADRAL.
Multi-aspect dense retrieval aims to incorporate aspect information (e.g., brand and category) into dual encoders to facilitate relevance matching. As an early and representative multi-aspect dense retriever, MADRAL learns several extra aspect embeddings and fuses the explicit aspects with an implicit aspect "OTHER" for final representation. MADRAL was evaluated on proprietary data and its code was not released, making it challenging to validate its effectiveness on other datasets. We failed to reproduce its effectiveness on the public MA-Amazon data, motivating us to probe the reasons and re-examine its components. We propose several component alternatives for comparisons, including replacing "OTHER" with "CLS" and representing aspects with the first several content tokens. Through extensive experiments, we confirm that learning "OTHER" from scratch in aspect fusion is harmful. In contrast, our proposed variants can greatly enhance the retrieval performance. Our research not only sheds light on the limitations of MADRAL but also provides valuable insights for future studies on more powerful multi-aspect dense retrieval models. Code will be released at: