Entity tracking is essential for complex reasoning. To perform in-context entity tracking, language models (LMs) must bind an entity to its attribute (e.g., bind a container to its content) to recall attribute for a given entity. For example, given a context mentioning ``The coffee is in Box Z, the stone is in Box M, the map is in Box H'', to infer ``Box Z contains the coffee'' later, LMs must bind ``Box Z'' to ``coffee''. To explain the binding behaviour of LMs, Feng and Steinhardt (2023) introduce a Binding ID mechanism and state that LMs use a abstract concept called Binding ID (BI) to internally mark entity-attribute pairs. However, they have not directly captured the BI determinant information from entity activations. In this work, we provide a novel view of the Binding ID mechanism by localizing the prototype of BI information. Specifically, we discover that there exists a low-rank subspace in the hidden state (or activation) of LMs, that primarily encodes the order of entity and attribute and which is used as the prototype of BI to causally determine the binding. To identify this subspace, we choose principle component analysis as our first attempt and it is empirically proven to be effective. Moreover, we also discover that when editing representations along directions in the subspace, LMs tend to bind a given entity to other attributes accordingly. For example, by patching activations along the BI encoding direction we can make the LM to infer ``Box Z contains the stone'' and ``Box Z contains the map''.