Recovering a photorealistic face from an artistic portrait is a challenging task since crucial facial details are often distorted or completely lost in artistic compositions. To handle this loss, we propose an Attribute-guided Face Recovery from Portraits (AFRP) that utilizes a Face Recovery Network (FRN) and a Discriminative Network (DN). FRN consists of an autoencoder with residual block-embedded skip-connections and incorporates facial attribute vectors into the feature maps of input portraits at the bottleneck of the autoencoder. DN has multiple convolutional and fully-connected layers, and its role is to enforce FRN to generate authentic face images with corresponding facial attributes dictated by the input attribute vectors. %Leveraging on the spatial transformer networks, FRN automatically compensates for misalignments of portraits. % and generates aligned face images. For the preservation of identities, we impose the recovered and ground-truth faces to share similar visual features. Specifically, DN determines whether the recovered image looks like a real face and checks if the facial attributes extracted from the recovered image are consistent with given attributes. %Our method can recover high-quality photorealistic faces from unaligned portraits while preserving the identity of the face images as well as it can reconstruct a photorealistic face image with a desired set of attributes. Our method can recover photorealistic identity-preserving faces with desired attributes from unseen stylized portraits, artistic paintings, and hand-drawn sketches. On large-scale synthesized and sketch datasets, we demonstrate that our face recovery method achieves state-of-the-art results.