This paper deals with the problem of localization in a cellular network in a dense urban scenario. Global Navigation Satellite System typically performs poorly in urban environments when there is no line-of-sight between the devices and the satellites, and thus alternative localization methods are often required. We present a simple yet effective method for localization based on pathloss. In our approach, the user to be localized reports the received signal strength from a set of base stations with known locations. For each base station we have a good approximation of the pathloss at each location in the map, provided by RadioUNet, an efficient deep learning-based simulator of pathloss functions in urban environment, akin to ray-tracing. Using the approximations of the pathloss functions of all base stations and the reported signal strengths, we are able to extract a very accurate approximation of the location of the user.