We present a novel unconditional video generative model designed to address long-term spatial and temporal dependencies. To capture these dependencies, our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks developed for three-dimensional object representation and employs a singular latent code to model an entire video sequence. Individual video frames are then synthesized from an intermediate tri-plane representation, which itself is derived from the primary latent code. This novel strategy reduces computational complexity by a factor of $2$ as measured in FLOPs. Consequently, our approach facilitates the efficient and temporally coherent generation of videos. Moreover, our joint frame modeling approach, in contrast to autoregressive methods, mitigates the generation of visual artifacts. We further enhance the model's capabilities by integrating an optical flow-based module within our Generative Adversarial Network (GAN) based generator architecture, thereby compensating for the constraints imposed by a smaller generator size. As a result, our model is capable of synthesizing high-fidelity video clips at a resolution of $256\times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps. The efficacy and versatility of our approach are empirically validated through qualitative and quantitative assessments across three different datasets comprising both synthetic and real video clips.