Improvement of statistical learning models in order to increase efficiency in solving classification or regression problems is still a goal pursued by the scientific community. In this way, the support vector machine model is one of the most successful and powerful algorithms for those tasks. However, its performance depends directly from the choice of the kernel function and their hyperparameters. The traditional choice of them, actually, can be computationally expensive to do the kernel choice and the tuning processes. In this article, it is proposed a novel framework to deal with the kernel function selection called Random Machines. The results improved accuracy and reduced computational time. The data study was performed in simulated data and over 27 real benchmarking datasets.