Despite their popularity across a wide range of domains, regression neural networks are prone to overfitting complex datasets. In this work, we propose a loss function termed Random Linear Projections (RLP) loss, which is empirically shown to mitigate overfitting. With RLP loss, the distance between sets of hyperplanes connecting fixed-size subsets of the neural network's feature-prediction pairs and feature-label pairs is minimized. The intuition behind this loss derives from the notion that if two functions share the same hyperplanes connecting all subsets of feature-label pairs, then these functions must necessarily be equivalent. Our empirical studies, conducted across benchmark datasets and representative synthetic examples, demonstrate the improvements of the proposed RLP loss over mean squared error (MSE). Specifically, neural networks trained with the RLP loss achieve better performance while requiring fewer data samples and are more robust to additive noise. We provide theoretical analysis supporting our empirical findings.