Deep Neural Networks (DNNs) are acknowledged as vulnerable to adversarial attacks, while the existing black-box attacks require extensive queries on the victim DNN to achieve high success rates. For query-efficiency, surrogate models of the victim are adopted as transferable attackers in consideration of their Gradient Similarity (GS), i.e., surrogates' attack gradients are similar to the victim's ones to some extent. However, it is generally neglected to exploit their similarity on outputs, namely the Prediction Similarity (PS), to filter out inefficient queries. To jointly utilize and also optimize surrogates' GS and PS, we develop QueryNet, an efficient attack network that can significantly reduce queries. QueryNet crafts several transferable Adversarial Examples (AEs) by surrogates, and then decides also by surrogates on the most promising AE, which is then sent to query the victim. That is to say, in QueryNet, surrogates are not only exploited as transferable attackers, but also as transferability evaluators for AEs. The AEs are generated using surrogates' GS and evaluated based on their FS, and therefore, the query results could be back-propagated to optimize surrogates' parameters and also their architectures, enhancing both the GS and the FS. QueryNet has significant query-efficiency, i.e., reduces queries by averagely about an order of magnitude compared to recent SOTA methods according to our comprehensive and real-world experiments: 11 victims (including 2 commercial models) on MNIST/CIFAR10/ImageNet, allowing only 8-bit image queries, and no access to the victim's training data.