In object detection, the instance count is typically used to define whether a dataset exhibits a long-tail distribution, implicitly assuming that models will underperform on categories with fewer instances. This assumption has led to extensive research on category bias in datasets with imbalanced instance counts. However, models still exhibit category bias even in datasets where instance counts are relatively balanced, clearly indicating that instance count alone cannot explain this phenomenon. In this work, we first introduce the concept and measurement of category information amount. We observe a significant negative correlation between category information amount and accuracy, suggesting that category information amount more accurately reflects the learning difficulty of a category. Based on this observation, we propose Information Amount-Guided Angular Margin (IGAM) Loss. The core idea of IGAM is to dynamically adjust the decision space of each category based on its information amount, thereby reducing category bias in long-tail datasets. IGAM Loss not only performs well on long-tailed benchmark datasets such as LVIS v1.0 and COCO-LT but also shows significant improvement for underrepresented categories in the non-long-tailed dataset Pascal VOC. Comprehensive experiments demonstrate the potential of category information amount as a tool and the generality of our proposed method.