Next-word probabilities from language models have been shown to successfully simulate human reading behavior. Building on this, we show that, interestingly, instruction-tuned large language models (LLMs) yield worse psychometric predictive power (PPP) for human reading behavior than base LLMs with equivalent perplexities. In other words, instruction tuning, which helps LLMs provide human-preferred responses, does not always make them human-like from the computational psycholinguistics perspective. In addition, we explore prompting methodologies in simulating human reading behavior with LLMs, showing that prompts reflecting a particular linguistic hypothesis lead LLMs to exhibit better PPP but are still worse than base LLMs. These highlight that recent instruction tuning and prompting do not offer better estimates than direct probability measurements from base LLMs in cognitive modeling.