This article introduces an energy and spectral efficient multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) transmission scheme designed for the future sixth generation (6G) wireless communication networks. The approach involves connecting each receiving radio frequency (RF) chain with multiple antenna elements and conducting sample-level adjustments for receiving beamforming patterns. The proposed system architecture and the dedicated signal processing methods enable the scheme to transmit a bigger number of parallel data streams than the number of receiving RF chains, achieving a spectral efficiency performance close to that of a fully digital (FD) MIMO system with the same number of antenna elements, each equipped with an RF chain. We refer to this system as a ''pseudo MIMO'' system due to its ability to mimic the functionality of additional invisible RF chains. The article begins with introducing the underlying principles of pseudo MIMO and discussing potential hardware architectures for its implementation. We then highlight several advantages of integrating pseudo MIMO into next-generation wireless networks. To demonstrate the superiority of our proposed pseudo MIMO transmission scheme to conventional MIMO systems, simulation results are presented. Additionally, we validate the feasibility of this new scheme by building the first pseudo MIMO prototype. Furthermore, we present some key challenges and outline potential directions for future research.