Recently, the research on protecting the intellectual properties (IP) of deep neural networks (DNN) has attracted serious concerns. A number of DNN copyright protection methods have been proposed. However, most of the existing watermarking methods focus on verifying the copyright of the model, which do not support the authentication and management of users' fingerprints, thus can not satisfy the requirements of commercial copyright protection. In addition, the query modification attack which was proposed recently can invalidate most of the existing backdoor-based watermarking methods. To address these challenges, in this paper, we propose a method to protect the intellectual properties of DNN models by using an additional class and steganographic images. Specifically, we use a set of watermark key samples to embed an additional class into the DNN, so that the watermarked DNN will classify the watermark key sample as the predefined additional class in the copyright verification stage. We adopt the least significant bit (LSB) image steganography to embed users' fingerprints into watermark key images. Each user will be assigned with a unique fingerprint image so that the user's identity can be authenticated later. Experimental results demonstrate that, the proposed method can protect the copyright of DNN models effectively. On Fashion-MNIST and CIFAR-10 datasets, the proposed method can obtain 100% watermark accuracy and 100% fingerprint authentication success rate. In addition, the proposed method is demonstrated to be robust to the model fine-tuning attack, model pruning attack, and the query modification attack. Compared with three existing watermarking methods (the logo-based, noise-based, and adversarial frontier stitching watermarking methods), the proposed method has better performance on watermark accuracy and robustness against the query modification attack.