While modern neural networks are making remarkable gains in terms of predictive accuracy, characterizing uncertainty over the parameters of these models (in a Bayesian setting) is challenging because of the high-dimensionality of the network parameter space and the correlations between these parameters. In this paper, we introduce a novel framework for variational inference for Bayesian neural networks that (1) encodes complex distributions in high-dimensional parameter space with representations in a low-dimensional latent space and (2) performs inference efficiently on the low-dimensional representations. Across a large array of synthetic and real-world datasets, we show that our method improves uncertainty characterization and model generalization when compared with methods that work directly in the parameter space.