As an intrinsic and fundamental property of big data, data heterogeneity exists in a variety of real-world applications, such as precision medicine, autonomous driving, financial applications, etc. For machine learning algorithms, the ignorance of data heterogeneity will greatly hurt the generalization performance and the algorithmic fairness, since the prediction mechanisms among different sub-populations are likely to differ from each other. In this work, we focus on the data heterogeneity that affects the prediction of machine learning models, and firstly propose the \emph{usable predictive heterogeneity}, which takes into account the model capacity and computational constraints. We prove that it can be reliably estimated from finite data with probably approximately correct (PAC) bounds. Additionally, we design a bi-level optimization algorithm to explore the usable predictive heterogeneity from data. Empirically, the explored heterogeneity provides insights for sub-population divisions in income prediction, crop yield prediction and image classification tasks, and leveraging such heterogeneity benefits the out-of-distribution generalization performance.