https://trisha025.github.io/Photozilla/
The advent of social media platforms has been a catalyst for the development of digital photography that engendered a boom in vision applications. With this motivation, we introduce a large-scale dataset termed 'Photozilla', which includes over 990k images belonging to 10 different photographic styles. The dataset is then used to train 3 classification models to automatically classify the images into the relevant style which resulted in an accuracy of ~96%. With the rapid evolution of digital photography, we have seen new types of photography styles emerging at an exponential rate. On that account, we present a novel Siamese-based network that uses the trained classification models as the base architecture to adapt and classify unseen styles with only 25 training samples. We report an accuracy of over 68% for identifying 10 other distinct types of photography styles. This dataset can be found at