Unsupervised visual defect detection is critical in industrial applications, requiring a representation space that captures normal data features while detecting deviations. Achieving a balance between expressiveness and compactness is challenging; an overly expressive space risks inefficiency and mode collapse, impairing detection accuracy. We propose a novel approach using an enhanced VQ-VAE framework optimized for unsupervised defect detection. Our model introduces a patch-aware dynamic code assignment scheme, enabling context-sensitive code allocation to optimize spatial representation. This strategy enhances normal-defect distinction and improves detection accuracy during inference. Experiments on MVTecAD, BTAD, and MTSD datasets show our method achieves state-of-the-art performance.