This paper addresses the problem of 2D pose representation during unsupervised 2D to 3D pose lifting to improve the accuracy, stability and generalisability of 3D human pose estimation (HPE) models. All unsupervised 2D-3D HPE approaches provide the entire 2D kinematic skeleton to a model during training. We argue that this is sub-optimal and disruptive as long-range correlations are induced between independent 2D key points and predicted 3D ordinates during training. To this end, we conduct the following study. With a maximum architecture capacity of 6 residual blocks, we evaluate the performance of 5 models which each represent a 2D pose differently during the adversarial unsupervised 2D-3D HPE process. Additionally, we show the correlations between 2D key points which are learned during the training process, highlighting the unintuitive correlations induced when an entire 2D pose is provided to a lifting model. Our results show that the most optimal representation of a 2D pose is that of two independent segments, the torso and legs, with no shared features between each lifting network. This approach decreased the average error by 20\% on the Human3.6M dataset when compared to a model with a near identical parameter count trained on the entire 2D kinematic skeleton. Furthermore, due to the complex nature of adversarial learning, we show how this representation can also improve convergence during training allowing for an optimum result to be obtained more often.