The most common algorithms for differentially private (DP) machine learning (ML) are all based on stochastic gradient descent, for example, DP-SGD. These algorithms achieve DP by treating each gradient as an independent private query. However, this independence can cause us to overpay in privacy loss because we don't analyze the entire gradient trajectory. In this work, we propose a new DP algorithm, which we call Accelerated-DP-SRGD (DP stochastic recursive gradient descent), that enables us to break this independence and only pay for privacy in the gradient difference, i.e., in the new information at the current step. Our algorithm achieves the optimal DP-stochastic convex optimization (DP-SCO) error (up to polylog factors) using only a single epoch over the dataset, and converges at the Nesterov's accelerated rate. Our algorithm can be run in at most $\sqrt{n}$ batch gradient steps with batch size at least $\sqrt{n}$, unlike prior work which required $O(n)$ queries with mostly constant batch sizes. To achieve this, our algorithm combines three key ingredients, a variant of stochastic recursive gradients (SRG), accelerated gradient descent, and correlated noise generation from DP continual counting. Finally, we also show that our algorithm improves over existing SoTA on multi-class logistic regression on MNIST and CIFAR-10.