Hierarchical clustering is a widely used approach for clustering datasets at multiple levels of granularity. Despite its popularity, existing algorithms such as hierarchical agglomerative clustering (HAC) are limited to the offline setting, and thus require the entire dataset to be available. This prohibits their use on large datasets commonly encountered in modern learning applications. In this paper, we consider hierarchical clustering in the online setting, where points arrive one at a time. We propose two algorithms that seek to optimize the Moseley and Wang (MW) revenue function, a variant of the Dasgupta cost. These algorithms offer different tradeoffs between efficiency and MW revenue performance. The first algorithm, OTD, is a highly efficient Online Top Down algorithm which provably achieves a 1/3-approximation to the MW revenue under a data separation assumption. The second algorithm, OHAC, is an online counterpart to offline HAC, which is known to yield a 1/3-approximation to the MW revenue, and produce good quality clusters in practice. We show that OHAC approximates offline HAC by leveraging a novel split-merge procedure. We empirically show that OTD and OHAC offer significant efficiency and cluster quality gains respectively over baselines.