Hand-eye calibration algorithms are mature and provide accurate transformation estimations for an effective camera-robot link but rely on a sufficiently wide range of calibration data to avoid errors and degenerate configurations. To solve the hand-eye problem in robotic-assisted minimally invasive surgery and also simplify the calibration procedure by using neural network method cooporating with the new objective function. We present a neural network-based solution that estimates the transformation from a sequence of images and kinematic data which significantly simplifies the calibration procedure. The network utilises the long short-term memory architecture to extract temporal information from the data and solve the hand-eye problem. The objective function is derived from the linear combination of remote centre of motion constraint, the re-projection error and its derivative to induce a small change in the hand-eye transformation. The method is validated with the data from da Vinci Si and the result shows that the estimated hand-eye matrix is able to re-project the end-effector from the robot coordinate to the camera coordinate within 10 to 20 pixels of accuracy in both testing dataset. The calibration performance is also superior to the previous neural network-based hand-eye method. The proposed algorithm shows that the calibration procedure can be simplified by using deep learning techniques and the performance is improved by the assumption of non-static hand-eye transformations.