Privacy auditing techniques for differentially private (DP) algorithms are useful for estimating the privacy loss to compare against analytical bounds, or empirically measure privacy in settings where known analytical bounds on the DP loss are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowledge of intermediate model iterates or the training data distribution), are tailored to specific tasks and model architectures, and require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federated settings where model training can take days or weeks. In this work, we present a novel "one-shot" approach that can systematically address these challenges, allowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters. Our privacy auditing method for federated learning does not require a priori knowledge about the model architecture or task. We show that our method provides provably correct estimates for privacy loss under the Gaussian mechanism, and we demonstrate its performance on a well-established FL benchmark dataset under several adversarial models.