Speech enhancement techniques improve the quality or the intelligibility of an audio signal by removing unwanted noise. It is used as preprocessing in numerous applications such as speech recognition, hearing aids, broadcasting and telephony. The evaluation of such algorithms often relies on reference-based objective metrics that are shown to correlate poorly with human perception. In order to evaluate audio quality as perceived by human observers it is thus fundamental to resort to subjective quality assessment. In this paper, a user evaluation based on crowdsourcing (subjective) and the Comparison Category Rating (CCR) method is compared against the DNSMOS, ViSQOL and 3QUEST (objective) metrics. The overall quality scores of three speech enhancement algorithms from real time communications (RTC) are used in the comparison using the P.808 toolkit. Results indicate that while the CCR scale allows participants to identify differences between processed and unprocessed audio samples, two groups of preferences emerge: some users rate positively by focusing on noise suppression processing, while others rate negatively by focusing mainly on speech quality. We further present results on the parameters, size considerations and speaker variations that are critical and should be considered when designing the CCR-based crowdsourcing evaluation.