In this paper, prediction for linear systems with missing information is investigated. New methods are introduced to improve the Mean Squared Error (MSE) on the test set in comparison to state-of-the-art methods, through appropriate tuning of Bias-Variance trade-off. First, the use of proposed Soft Weighted Prediction (SWP) algorithm and its efficacy are depicted and compared to previous works for non-missing scenarios. The algorithm is then modified and optimized for missing scenarios. It is shown that controlled over-fitting by suggested algorithms will improve prediction accuracy in various cases. Simulation results approve our heuristics in enhancing the prediction accuracy.