As 6G research advances, the growing demand leads to the emergence of novel technologies such as Integrated Sensing and Communication (ISAC), new antenna arrays like Extremely Large MIMO (XL-MIMO) and Reconfigurable Intelligent Surfaces (RIS), along with multi-frequency bands (6-24 GHz, above 100 GHz). Standardized unified channel models are crucial for research and performance evaluation across generations of mobile communication, but the existing 5G 3GPP channel model based on geometry-based stochastic model (GBSM) requires further extension to accommodate these 6G technologies. In response to this need, this article first investigates six distinctive channel characteristics introduced by 6G techenologies, such as ISAC target RCS, sparsity in the new mid-band, and others. Subsequently, an extended GBSM (E-GBSM) is proposed, integrating these characteristics into a unified modeling framework. The proposed model not only accommodates 6G technologies with flexibility but also maintains backward compatibility with 5G, ensuring a smooth evolution between generations. Finally, the implementation process of the proposed model is detailed, with experiments and simulations validate its effectiveness and accuracy, providing support for 6G channel modeling standardization efforts.