In this paper, we present a new topic modelling approach via the theory of optimal transport (OT). Specifically, we present a document with two distributions: a distribution over the words (doc-word distribution) and a distribution over the topics (doc-topic distribution). For one document, the doc-word distribution is the observed, sparse, low-level representation of the content, while the doc-topic distribution is the latent, dense, high-level one of the same content. Learning a topic model can then be viewed as a process of minimising the transportation of the semantic information from one distribution to the other. This new viewpoint leads to a novel OT-based topic modelling framework, which enjoys appealing simplicity, effectiveness, and efficiency. Extensive experiments show that our framework significantly outperforms several state-of-the-art models in terms of both topic quality and document representations.