The rise in the use of AI/ML applications across industries has sparked more discussions about the fairness of AI/ML in recent times. While prior research on the fairness of AI/ML exists, there is a lack of empirical studies focused on understanding the views and experiences of AI practitioners in developing a fair AI/ML. Understanding AI practitioners' views and experiences on the fairness of AI/ML is important because they are directly involved in its development and deployment and their insights can offer valuable real-world perspectives on the challenges associated with ensuring fairness in AI/ML. We conducted semi-structured interviews with 22 AI practitioners to investigate their understanding of what a 'fair AI/ML' is, the challenges they face in developing a fair AI/ML, the consequences of developing an unfair AI/ML, and the strategies they employ to ensure AI/ML fairness. We developed a framework showcasing the relationship between AI practitioners' understanding of 'fair AI/ML' and (i) their challenges in its development, (ii) the consequences of developing an unfair AI/ML, and (iii) strategies used to ensure AI/ML fairness. Additionally, we also identify areas for further investigation and offer recommendations to aid AI practitioners and AI companies in navigating fairness.