Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information, and the types of reasoning are mainly divided into numerical reasoning and span extraction. Despite being the main challenge of the task compared to extractive QA, current numerical reasoning method simply uses LSTM to autoregressively decode program sequences, and each decoding step produces either an operator or an operand. However, the step-by-step decoding suffers from exposure bias, and the accuracy of program generation drops sharply with progressive decoding. In this paper, we propose a non-autoregressive program generation framework, which facilitates program generation in parallel. Our framework, which independently generates complete program tuples containing both operators and operands, can significantly boost the speed of program generation while addressing the error accumulation issue. Our experiments on the MultiHiertt dataset shows that our model can bring about large improvements (+7.97 EM and +6.38 F1 points) over the strong baseline, establishing the new state-of-the-art performance, while being much faster (21x) in program generation. The performance drop of our method is also significantly smaller than the baseline with increasing numbers of numerical reasoning steps.