Action Localization is a challenging problem that combines detection and recognition tasks, which are often addressed separately. State-of-the-art methods rely on off-the-shelf bounding box detections pre-computed at high resolution and propose transformer models that focus on the classification task alone. Such two-stage solutions are prohibitive for real-time deployment. On the other hand, single-stage methods target both tasks by devoting part of the network (generally the backbone) to sharing the majority of the workload, compromising performance for speed. These methods build on adding a DETR head with learnable queries that, after cross- and self-attention can be sent to corresponding MLPs for detecting a person's bounding box and action. However, DETR-like architectures are challenging to train and can incur in big complexity. In this paper, we observe that a straight bipartite matching loss can be applied to the output tokens of a vision transformer. This results in a backbone + MLP architecture that can do both tasks without the need of an extra encoder-decoder head and learnable queries. We show that a single MViT-S architecture trained with bipartite matching to perform both tasks surpasses the same MViT-S when trained with RoI align on pre-computed bounding boxes. With a careful design of token pooling and the proposed training pipeline, our MViTv2-S model achieves +3 mAP on AVA2.2. w.r.t. the two-stage counterpart. Code and models will be released after paper revision.