In this work, we focus on the multiple-policy evaluation problem where we are given a set of $K$ target policies and the goal is to evaluate their performance (the expected total rewards) to an accuracy $\epsilon$ with probability at least $1-\delta$. We propose an algorithm named $\mathrm{CAESAR}$ to address this problem. Our approach is based on computing an approximate optimal offline sampling distribution and using the data sampled from it to perform the simultaneous estimation of the policy values. $\mathrm{CAESAR}$ consists of two phases. In the first one we produce coarse estimates of the vistation distributions of the target policies at a low order sample complexity rate that scales with $\tilde{O}(\frac{1}{\epsilon})$. In the second phase, we approximate the optimal offline sampling distribution and compute the importance weighting ratios for all target policies by minimizing a step-wise quadratic loss function inspired by the objective in DualDICE. Up to low order and logarithm terms $\mathrm{CAESAR}$ achieves a sample complexity $\tilde{O}\left(\frac{H^4}{\epsilon^2}\sum_{h=1}^H\max_{k\in[K]}\sum_{s,a}\frac{(d_h^{\pi^k}(s,a))^2}{\mu^*_h(s,a)}\right)$, where $d^{\pi}$ is the visitation distribution of policy $\pi$ and $\mu^*$ is the optimal sampling distribution.