Multipath time-delay estimation is commonly encountered in radar and sonar signal processing. In some real-life environments, impulse noise is ubiquitous and significantly degrades estimation performance. Here, we propose a Bayesian approach to tailor the Bayesian Compressive Sensing (BCS) to mitigate impulsive noises. In particular, a heavy-tail Laplacian distribution is used as a statistical model for impulse noise, while Laplacian prior is used for sparse multipath modeling. The Bayesian learning problem contains hyperparameters learning and parameter estimation, solved under the BCS inference framework. The performance of our proposed method is compared with benchmark methods, including compressive sensing (CS), BCS, and Laplacian-prior BCS (L-BCS). The simulation results show that our proposed method can estimate the multipath parameters more accurately and have a lower root mean squared estimation error (RMSE) in intensely impulsive noise.