Grasping is a fundamental skill for interacting with the environment. However, this ability can be difficult for some (e.g. due to disability). Wearable robotic solutions can enhance or restore hand function, and recent advances have leveraged computer vision to improve grasping capabilities. However, grasping transparent objects remains challenging due to their poor visual contrast and ambiguous depth cues. Furthermore, while multimodal control strategies incorporating tactile and auditory feedback have been explored to grasp transparent objects, the integration of vision with these modalities remains underdeveloped. This paper introduces MultiClear, a multimodal framework designed to enhance grasping assistance in a wearable soft exoskeleton glove for transparent objects by fusing RGB data, depth data, and auditory signals. The exoskeleton glove integrates a tendon-driven actuator with an RGB-D camera and a built-in microphone. To achieve precise and adaptive control, a hierarchical control architecture is proposed. For the proposed hierarchical control architecture, a high-level control layer provides contextual awareness, a mid-level control layer processes multimodal sensory inputs, and a low-level control executes PID motor control for fine-tuned grasping adjustments. The challenge of transparent object segmentation was managed by introducing a vision foundation model for zero-shot segmentation. The proposed system achieves a Grasping Ability Score of 70.37%, demonstrating its effectiveness in transparent object manipulation.