We propose a 3D object detection system with multi-sensor refinement in the context of autonomous driving. In our framework, the monocular camera serves as the fundamental sensor for 2D object proposal and initial 3D bounding box prediction. While the stereo cameras and LiDAR are treated as adaptive plug-in sensors to refine the 3D box localization performance. For each observed element in the raw measurement domain (e.g., pixels for stereo, 3D points for LiDAR), we model the local geometry as an instance vector representation, which indicates the 3D coordinate of each element respecting to the object frame. Using this unified geometric representation, the 3D object location can be unified refined by the stereo photometric alignment or point cloud alignment. We demonstrate superior 3D detection and localization performance compared to state-of-the-art monocular, stereo methods and competitive performance compared with the baseline LiDAR method on the KITTI object benchmark.