Both passive and active intelligent reflecting surfaces (IRSs) can be deployed in complex environments to enhance wireless network coverage by creating multiple blockage-free cascaded line-of-sight (LoS) links. In this paper, we study a multi-passive/active-IRS (PIRS/AIRS) aided wireless network with a multi-antenna base station (BS) in a given region. First, we divide the region into multiple non-overlapping cells, each of which may contain one candidate location that can be deployed with a single PIRS or AIRS. Then, we show several trade-offs between minimizing the total IRS deployment cost and enhancing the signal-to-noise ratio (SNR) performance over all cells via direct/cascaded LoS transmission with the BS. To reconcile these trade-offs, we formulate a joint multi-PIRS/AIRS deployment problem to select an optimal subset of all candidate locations for deploying IRS and also optimize the number of passive/active reflecting elements deployed at each selected location to satisfy a given SNR target over all cells, such that the total deployment cost is minimized. However, due to the combinatorial optimization involved, the formulated problem is difficult to be solved optimally. To tackle this difficulty, we first optimize the reflecting element numbers with given PIRS/AIRS deployed locations via sequential refinement, followed by a partial enumeration to determine the PIRS/AIRS locations. Simulation results show that our proposed algorithm achieves better cost-performance trade-offs than other baseline deployment strategies.