In the aftermath of the COVID-19 pandemic and amid accelerating climate change, emerging infectious diseases, particularly those arising from zoonotic spillover, remain a global threat. Mpox (caused by the monkeypox virus) is a notable example of a zoonotic infection that often goes undiagnosed, especially as its rash progresses through stages, complicating detection across diverse populations with different presentations. In August 2024, the WHO Director-General declared the mpox outbreak a public health emergency of international concern for a second time. Despite the deployment of deep learning techniques for detecting diseases from skin lesion images, a robust and publicly accessible foundation model for mpox diagnosis is still lacking due to the unavailability of open-source mpox skin lesion images, multimodal clinical data, and specialized training pipelines. To address this gap, we propose MpoxVLM, a vision-language model (VLM) designed to detect mpox by analyzing both skin lesion images and patient clinical information. MpoxVLM integrates the CLIP visual encoder, an enhanced Vision Transformer (ViT) classifier for skin lesions, and LLaMA-2-7B models, pre-trained and fine-tuned on visual instruction-following question-answer pairs from our newly released mpox skin lesion dataset. Our work achieves 90.38% accuracy for mpox detection, offering a promising pathway to improve early diagnostic accuracy in combating mpox.