Emerging Implicit Neural Representation (INR) is a promising data compression technique, which represents the data using the parameters of a Deep Neural Network (DNN). Existing methods manually partition a complex scene into local regions and overfit the INRs into those regions. However, manually designing the partition scheme for a complex scene is very challenging and fails to jointly learn the partition and INRs. To solve the problem, we propose MoEC, a novel implicit neural compression method based on the theory of mixture of experts. Specifically, we use a gating network to automatically assign a specific INR to a 3D point in the scene. The gating network is trained jointly with the INRs of different local regions. Compared with block-wise and tree-structured partitions, our learnable partition can adaptively find the optimal partition in an end-to-end manner. We conduct detailed experiments on massive and diverse biomedical data to demonstrate the advantages of MoEC against existing approaches. In most of experiment settings, we have achieved state-of-the-art results. Especially in cases of extreme compression ratios, such as 6000x, we are able to uphold the PSNR of 48.16.