https://github.com/xiaoyuans/MANIE.
Noise is a pervasive element within real-world measurement data, significantly undermining the performance of network inference models. However, the quest for a comprehensive enhancement framework capable of bolstering noise resistance across a diverse array of network inference models has remained elusive. Here, we present an elegant and efficient framework tailored to amplify the capabilities of network inference models in the presence of noise. Leveraging curriculum learning, we mitigate the deleterious impact of noisy samples on network inference models. Our proposed framework is model-agnostic, seamlessly integrable into a plethora of model-based and model-free network inference methods. Notably, we utilize one model-based and three model-free network inference methods as the foundation. Extensive experimentation across various synthetic and real-world networks, encapsulating diverse nonlinear dynamic processes, showcases substantial performance augmentation under varied noise types, particularly thriving in scenarios enriched with clean samples. This framework's adeptness in fortifying both model-free and model-based network inference methodologies paves the avenue towards a comprehensive and unified enhancement framework, encompassing the entire spectrum of network inference models. Available Code: