https://github.com/zzr-idam/MixNet}.
With the continuous advancement of imaging devices, the prevalence of Ultra-High-Definition (UHD) images is rising. Although many image restoration methods have achieved promising results, they are not directly applicable to UHD images on devices with limited computational resources due to the inherently high computational complexity of UHD images. In this paper, we focus on the task of low-light image enhancement (LLIE) and propose a novel LLIE method called MixNet, which is designed explicitly for UHD images. To capture the long-range dependency of features without introducing excessive computational complexity, we present the Global Feature Modulation Layer (GFML). GFML associates features from different views by permuting the feature maps, enabling efficient modeling of long-range dependency. In addition, we also design the Local Feature Modulation Layer (LFML) and Feed-forward Layer (FFL) to capture local features and transform features into a compact representation. This way, our MixNet achieves effective LLIE with few model parameters and low computational complexity. We conducted extensive experiments on both synthetic and real-world datasets, and the comprehensive results demonstrate that our proposed method surpasses the performance of current state-of-the-art methods. The code will be available at \url{