In this paper, we investigate how metasurfaces can be deployed to deliver high data rates in a millimeter-wave (mmWave) indoor dense space with many blocking objects. These surfaces can either be static metasurfaces (SMSs) that reflect with fixed phase-shifts or reconfigurable intelligent surfaces (RISs) that can reconfigure their phase-shifts to the currently served user. The latter comes with an increased power, cabling, and signaling cost. To see how reconfigurability affects the network performance, we propose an iterative algorithm based on the feasible point pursuit successive convex approximation method. We jointly optimize the types and phase-shifts of the surfaces and the time portion allocated to each user equipment to maximize the minimum data rate achieved by the network. Our numerical results demonstrate that the minimum data rate improves as more RISs are introduced but the gain diminishes after some point. Therefore, introducing more reconfigurability is not always necessary. Another result shows that to reach the same data rate achieved by using 22 SMSs, at least 18 RISs are needed. This suggests that when it is costly to deploy many RISs, as an inexpensive alternative solution, one can reach the same data rate just by densely deploying more SMSs.