Vision-language models (VLMs) serve as general-purpose end-to-end models in autonomous driving, performing subtasks such as prediction, planning, and perception through question-and-answer interactions. However, most existing methods rely on computationally expensive visual encoders and large language models (LLMs), making them difficult to deploy in real-world scenarios and real-time applications. Meanwhile, most existing VLMs lack the ability to process multiple images, making it difficult to adapt to multi-camera perception in autonomous driving. To address these issues, we propose a novel framework called MiniDrive, which incorporates our proposed Feature Engineering Mixture of Experts (FE-MoE) module and Dynamic Instruction Adapter (DI-Adapter). The FE-MoE effectively maps 2D features into visual token embeddings before being input into the language model. The DI-Adapter enables the visual token embeddings to dynamically change with the instruction text embeddings, resolving the issue of static visual token embeddings for the same image in previous approaches. Compared to previous works, MiniDrive achieves state-of-the-art performance in terms of parameter size, floating point operations, and response efficiency, with the smallest version containing only 83M parameters.