https://jianxgao.github.io/MinD-3D.
In this paper, we introduce Recon3DMind, a groundbreaking task focused on reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals. This represents a major step forward in cognitive neuroscience and computer vision. To support this task, we present the fMRI-Shape dataset, utilizing 360-degree view videos of 3D objects for comprehensive fMRI signal capture. Containing 55 categories of common objects from daily life, this dataset will bolster future research endeavors. We also propose MinD-3D, a novel and effective three-stage framework that decodes and reconstructs the brain's 3D visual information from fMRI signals. This method starts by extracting and aggregating features from fMRI frames using a neuro-fusion encoder, then employs a feature bridge diffusion model to generate corresponding visual features, and ultimately recovers the 3D object through a generative transformer decoder. Our experiments demonstrate that this method effectively extracts features that are valid and highly correlated with visual regions of interest (ROIs) in fMRI signals. Notably, it not only reconstructs 3D objects with high semantic relevance and spatial similarity but also significantly deepens our understanding of the human brain's 3D visual processing capabilities. Project page at: