Integrated sensing and communications (ISAC) and index modulation (IM) are promising technologies for beyond fifth generation (B5G) and sixth generation (6G) systems. While ISAC enables new applications, IM is attractive for its inherent energy and spectral efficiencies. In this article we propose massive IM as an enabler of ISAC, by considering transmit signals with information conveyed through the indexation of the resources utilized in their transmission, and pilot symbols exploited for sensing. In order to overcome the complexity hurdle arising from the large sizes of IM codebooks, we propose a novel message passing (MP) decoder designed under the Gaussian belief propagation (GaBP) framework exploiting a novel unit vector decomposition (UVD) of IM signals with purpose-derived novel probability distributions. The proposed method enjoys a low decoding complexity that is independent of combinatorial factors, while still approaching the performance of unfeasible state-of-the-art (SotA) search-based methods. The effectiveness of the proposed approach is demonstrated via complexity analysis and numerical results for piloted generalized quadrature spatial modulation (GQSM) systems of large sizes (up to 96 antennas).