Low-coherence sequences with low peak-to-average power ratio (PAPR) are crucial for multi-carrier wireless communication systems and are used for pilots, spreading sequences, and so on. This letter proposes an efficient low-coherence sequence design algorithm (LOCEDA) that can generate any number of sequences of any length that satisfy user-defined PAPR constraints while supporting flexible subcarrier assignments in orthogonal frequency-division multiple access (OFDMA) systems. We first visualize the low-coherence sequence design problem under PAPR constraints as resolving collisions between hyperspheres. By iteratively adjusting the radii and positions of these hyperspheres, we effectively generate low-coherence sequences that strictly satisfy the imposed PAPR constraints. Simulation results (i) confirm that LOCEDA outperforms existing methods, (ii) demonstrate its flexibility, and (iii) highlight its potential for various application scenarios.