Masked image modeling (MIM) has emerged as a promising self-supervised learning (SSL) strategy. The MIM pre-training facilitates learning powerful representations using an encoder-decoder framework by randomly masking some input pixels and reconstructing the masked pixels from the remaining ones. However, as the encoder is trained with partial pixels, the MIM pre-training can suffer from a low capability of understanding long-range dependency. This limitation may hinder its capability to fully understand multiple-range dependencies, resulting in narrow highlighted regions in the attention map that may incur accuracy drops. To mitigate the limitation, We propose a self-supervised learning framework, named Longer-range Contextualized Masked Autoencoder (LC-MAE). LC-MAE effectively leverages a global context understanding of visual representations while simultaneously reducing the spatial redundancy of input at the same time. Our method steers the encoder to learn from entire pixels in multiple views while also learning local representation from sparse pixels. As a result, LC-MAE learns more discriminative representations, leading to a performance improvement of achieving 84.2% top-1 accuracy with ViT-B on ImageNet-1K with 0.6%p gain. We attribute the success to the enhanced pre-training method, as evidenced by the singular value spectrum and attention analyses. Finally, LC-MAE achieves significant performance gains at the downstream semantic segmentation and fine-grained visual classification tasks; and on diverse robust evaluation metrics. Our code will be publicly available.