As advancements close the gap between current device capabilities and the requirements for terahertz (THz)-band communications, the demand for terabit-per-second (Tbps) circuits is on the rise. This paper addresses the challenge of achieving Tbps data rates in THz-band communications by focusing on the baseband computation bottleneck. We propose leveraging parallel processing and pseudo-soft information (PSI) across multicarrier THz channels for efficient channel code decoding. We map bits to transmission resources using shorter code-words to enhance parallelizability and reduce complexity. Additionally, we integrate channel state information into PSI to alleviate the processing overhead of soft decoding. Results demonstrate that PSI-aided decoding of 64-bit code-words halves the complexity of 128-bit hard decoding under comparable effective rates, while introducing a 4 dB gain at a $10^{-3}$ block error rate. The proposed scheme approximates soft decoding with significant complexity reduction at a graceful performance cost.