While guide dogs offer essential mobility assistance, their high cost, limited availability, and care requirements make them inaccessible to most blind or low vision (BLV) individuals. Recent advances in quadruped robots provide a scalable solution for mobility assistance, but many current designs fail to meet real-world needs due to a lack of understanding of handler and guide dog interactions. In this paper, we share lessons learned from developing a human-centered guide dog robot, addressing challenges such as optimal hardware design, robust navigation, and informative scene description for user adoption. By conducting semi-structured interviews and human experiments with BLV individuals, guide-dog handlers, and trainers, we identified key design principles to improve safety, trust, and usability in robotic mobility aids. Our findings lay the building blocks for future development of guide dog robots, ultimately enhancing independence and quality of life for BLV individuals.