Artificial neural networks have advanced the frontiers of reversible steganography. The core strength of neural networks is the ability to render accurate predictions for a bewildering variety of data. Residual modulation is recognised as the most advanced reversible steganographic algorithm for digital images and the pivot of which is the predictive module. The function of this module is to predict pixel intensity given some pixel-wise contextual information. This task can be perceived as a low-level vision problem and hence neural networks for addressing a similar class of problems can be deployed. On top of the prior art, this paper analyses the predictive uncertainty and endows the predictive module with the option to abstain when encountering a high level of uncertainty. Uncertainty analysis can be formulated as a pixel-level binary classification problem and tackled by both supervised and unsupervised learning. In contrast to handcrafted statistical analytics, learning-based analytics can learn to follow some general statistical principles and simultaneously adapt to a specific predictor. Experimental results show that steganographic performance can be remarkably improved by adaptively filtering out the unpredictable regions with the learning-based uncertainty analysers.