Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:We introduce an approach for the answer-aware question generation problem. Instead of only relying on the capability of strong pre-trained language models, we observe that the information of answers and questions can be found in some relevant sentences in the context. Based on that, we design a model which includes two modules: a selector and a generator. The selector forces the model to more focus on relevant sentences regarding an answer to provide implicit local information. The generator generates questions by implicitly combining local information from the selector and global information from the whole context encoded by the encoder. The model is trained jointly to take advantage of latent interactions between the two modules. Experimental results on two benchmark datasets show that our model is better than strong pre-trained models for the question generation task. The code is also available (shorturl.at/lV567).