Semi-supervised domain adaptation (SSDA) has been widely studied due to its ability to utilize a few labeled target data to improve the generalization ability of the model. However, existing methods only consider designing certain strategies for target samples to adapt, ignoring the exploration of customized learning for different target samples. When the model encounters complex target distribution, existing methods will perform limited due to the inability to clearly and comprehensively learn the knowledge of multiple types of target samples. To fill this gap, this paper focuses on designing a framework to use different strategies for comprehensively mining different target samples. We propose a novel source-free framework (SOUF) to achieve semi-supervised fine-tuning of the source pre-trained model on the target domain. Different from existing SSDA methods, SOUF decouples SSDA from the perspectives of different target samples, specifically designing robust learning techniques for unlabeled, reliably labeled, and noisy pseudo-labeled target samples. For unlabeled target samples, probability-based weighted contrastive learning (PWC) helps the model learn more discriminative feature representations. To mine the latent knowledge of labeled target samples, reliability-based mixup contrastive learning (RMC) learns complex knowledge from the constructed reliable sample set. Finally, predictive regularization learning (PR) further mitigates the misleading effect of noisy pseudo-labeled samples on the model. Extensive experiments on benchmark datasets demonstrate the superiority of our framework over state-of-the-art methods.