Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Multisensory polices are known to enhance both state estimation and target tracking. However, in the space of end-to-end sensorimotor control, this multi-sensor outlook has received limited attention. Moreover, systematic ways to make policies robust to partial sensor failure are not well explored. In this work, we propose a specific customization of Dropout, called \textit{Sensor Dropout}, to improve multisensory policy robustness and handle partial failure in the sensor-set. We also introduce an additional auxiliary loss on the policy network in order to reduce variance in the band of potential multi- and uni-sensory policies to reduce jerks during policy switching triggered by an abrupt sensor failure or deactivation/activation. Finally, through the visualization of gradients, we show that the learned policies are conditioned on the same latent states representation despite having diverse observations spaces - a hallmark of true sensor-fusion. Simulation results of the multisensory policy, as visualized in TORCS racing game, can be seen here: https://youtu.be/QAK2lcXjNZc.
* to be published in Conference on Robot Learning (CoRL), 2017